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We consider resonant transmission through a gated finite-length quantum wire connected to leads via finite-
transparency junctions, such that the escape time is much smaller than the energy relaxation time in the wire.
The coherent electron transport is strongly modified by the Coulomb interaction. The low-temperature current-
voltage �IV� curves show steplike dependence on the bias voltage determined by the distance between the
quantum levels inside the conductor, the pattern being dependent on the ratio between the charging energy and
level spacing. If the system is tuned close to the resonance condition by the gate voltage, the low-voltage IV
curve is ohmic. At large Coulomb energy and low temperatures, the conductance is temperature independent
for any relationship between temperature, level spacing, and coupling between the wire and the leads.
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I. INTRODUCTION

Quantization of conductance in ballistic one-dimensional
�1D� channels or islands1 is one of the central issues of cur-
rent mesoscopic physics �see Ref. 2 for a review�. In small-
size islands, the Coulomb blockade suppresses conductivity
at low temperatures and small applied voltages.3 The Cou-
lomb blockade can be controlled by varying the charge of the
island between two tunnel barriers by the potential at the
gate electrode. The classical theory of the Coulomb-blockade
oscillations was developed in Ref. 4, while the role of the
discreteness of the spectrum was addressed in Refs. 5 and 6
and several subsequent papers. In these models the island
was assumed to be almost isolated from both source and
drain so that the number of particles on it could be consid-
ered a conserved quantity. This assumption, in general, does
not hold if the transparency of the contacts between the is-
land and the leads is finite.7 Typical examples of such sys-
tems are quantum dots.8

Transport through quantum conductors �QCs� essentially
coupled to the leads has not been fully investigated so far,
though it offers excellent opportunities for studying the in-
terplay between quantum and classical properties of QC. In
this work, we investigate transport through a relatively short
single-mode ballistic QC assuming a simplest model where
charging effects are important, whereas the Luttinger-liquid
behavior9,10 is still not pronounced �for estimates see, e.g.,
Refs. 11 and 12�. The conductor is connected to two leads
via identical contacts with a finite transition amplitude T. Its
length d is shorter that the electron mean-free path, the trans-
port mechanism being the resonant transmission, which we
distinguish from elastic cotunneling.13 This mechanism is
relevant to recent experiments on carbon nanotubes.14,15

At T→0, the QC holds a fixed number of particles, N. If
a particle with energy E tunnels between a lead and the state
with energy �p in the QC, the charging energy of the QC
couples E and �p through6

E = �p + 2EC�N − N0� � EC, �1�

where � stands for adding/removing a particle, EC=e2 /2C is
the Coulomb energy of the QC, C is the QC capacitance, and
eN0 is the gate-induced charge density. At finite T, the system
forms a double-barrier resonant tunneling structure, its prop-
erties being determined by the resonant states. The distance
between these resonant levels is �E=��vF /d �where vF is
the electron velocity� while their width is �= �T�2�E. The
occupation probability of the modes is determined by the
competition between the relaxation processes in the QC and
in the leads, as well as by escape probability from the QC
into the leads.

Relaxation in the QC is determined by interplay between
the charge relaxation time �Q, which includes the flight time
and the RC time,16,17 the escape time � /�, and the energy
relaxation time �� due to inelastic electron-phonon and
electron-electron processes in the QC. We will show later
that, in our situation, the RC time, �C=RC, is much shorter
than the inelastic relaxation time ��. In the ballistic limit, the
flight time d /vF is also shorter than ��. If the contact trans-
mission is not very low, such that � /����, the energy relax-
ation time �� appears to be the longest time scale. As a result,
a homogeneous distribution of charge and potential in the
conductor establishes quickly while the level occupation re-
laxes much slower, leading to pronounced effects in the con-
ductance. In this case the distribution function inside the QC
is determined by the coupling to the leads; it can strongly
deviate from the thermal Fermi distribution.

We will assume here that the resonance width � is small
compared to the interlevel spacing, but is still larger than the
inelastic relaxation rate in the QC,

�/�� � � � �E . �2�

Requirement �2� is opposite to the limit � /�	�� considered
previously in many publications.6,18–22 In that case the occu-
pation probability is given by the equilibrium Fermi distri-
bution with the lattice temperature, the chemical potential
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being determined by the �conserved� number of particles.
Under the condition of Eq. �2� considered below the QC

cannot be treated as an isolated quantum dot with the van-
ishingly weak coupling to leads,23 and therefore, N is not a
good quantum number but rather an average value deter-
mined by the interaction with the leads. To allow for this we
employ the mean-field approach which leads to modification
of Eq. �1�. We show that at finite T the excitation spectrum
changes significantly. At large Coulomb energy, EC
�E,
and low temperatures, T�EC, energy exhibits a sharp step as
a function of the internal momentum in the QC. This step
defines the internal Fermi level. The width of the step is
determined by the width of the resonant level. As a result,
zero-voltage conductance becomes temperature-independent
in a rather broad temperature domain T�EC irrespective of
the relationship between T, �E, and �. In a carbon nanotube
the ratio EC /�E=e2d /2��vFC can reach values e2 /2��vF
for the minimal capacitance of the tube C�d. For typical
vF=0.8�108 cm /s �see, e.g., Ref. 15� this ratio is �0.46,
i.e., is of the order of unity. Therefore, in order to achieve
better understanding of the experimental situation and having
in mind more general applications, both limits of large and
small ratio EC /�E have to be studied.

II. MODEL

A. Hamiltonian

We specify the charging Hamiltonian as

ĤC = EC��
�
�

V
̂�

†�r�̂��r�dV − N0	2

, �3�

where V is volume of the QC and � is the spin index. The
spin dependence is due to the level filling that controls the
charge on the QC. This is the simplest and the most widely
used form of the charging Hamiltonian; note that it ignores
both the Luttinger-liquid �LL� effects and inhomogeneities in
the charge distribution.12,24

The LL parameter g that characterizes the electron-
electron Coulomb interaction strength is coupled to the ratio
EC /�E�e2 /2��vF by e2 /2��vF�g−2−1. For strong Cou-
lomb interaction one has g�1. As has been shown in Ref.
12, the LL behavior in a one-dimensional conductor of
length d connected to the leads becomes important only
when the bias voltages are quite high, eV /�E�g−1. For
lower voltages the LL effects are small. We see that for
strong Coulomb interaction, g�1, the region of Fermi-liquid
behavior extends up to moderate voltages eV��E. The LL
corrections also vanish in the limit of small interaction,
e2 /2��vF�1. Therefore, our model that avoids the LL ef-
fects is reasonable up to the voltages of the order of several
interlevel distances.

The use of an effective capacitance in our model is justi-
fied because the uniform charge distribution in the QC estab-
lishes quickly. Indeed, in what follows we are interested in
the resonance transmission. Near a resonance, the resistance
of the double-barrier structure is of the order of the resistance
quantum R�G0

−1=2�� /e2. Therefore, the RC time is

�C � C�/e2 = �/2EC � ��E/EC��d/vF� .

The flight time d /vF is much shorter than the inelastic time
in the ballistic limit. Therefore, there exists a wide window
extending from large to small magnitudes of the interaction
parameter EC /�E for which �Q���.

The mean-field approximation reduces Eq. �3� to the
equation for the retarded and advanced Green’s functions
G�

R�A�

G0
−1��,r1�G��r1,r2� +� W�r1,r�G��r,r2�dV = ��r1 − r2�

�4�

containing the effective nonlocal interaction in the QC,

W�r1,r� = 2ECh�r1�h�r�� d�

4�i
G�

K�r1,r� , �5�

which is expressed through the Keldysh function, GK. The
factor h�r�=1 if r belongs to the QC, and zero otherwise,

G0
−1��,r1� 
 − � + �2p̂1

2/2m − � + UCh�r1� + Vb�r1� ,

p̂1
−i� /�r1. The energy UC=e2�N−N0� /C−e� is produced
by the charge on the QC and the potential � produced by the
gate electrode �N0 is the number of electrons for zero gate
voltage�; � is the chemical potential; Vb�r1� is the potential
of the barriers at the contacts.

For methodical purposes, let us start with the example of
very long QC under zero-bias voltage assuming �E�EC.
Since EC is coordinate independent one can consider the
wave functions as plane waves, and use momentum repre-
sentation. Under the condition of Eq. �2� the distribution
function in the island is determined by the leads. We have in
Eq. �5�

G�
K�r1,r� = �G�

R�r1,r� − G�
A�r1,r��tanh

�

2T

= 2�i� dp

2�
eip�r1−r����p − ��tanh

�

2T
,

where �p is the energy spectrum. If the island is long we can
extend the coordinate integration from −� to +� and find
from Eq. �4�

�p + UC − � + EC tanh
�p

2T
�G�

R�p� = 1.

The Green’s function has the pole at �=�p, where

�p = �p + UC + EC tanh
�p

2T
, �p =

�2p2

2m
− EF. �6�

�p is measured from the Fermi level EF=�2pF
2 /2m in the

leads. At �p	T this coincides with Eq. �1�. For �p→0 one
has �p= ��p+UC� / �1−EC /2T�. The slope of the �p vs �p de-
pendence is negative for EC
2T, and the function �p be-
comes multivalued �see Fig. 1�a��. As we will see later, �p in
fact experiences an abrupt jump shown in Fig. 1�a� by the
vertical line. This infinite slope is a consequence of the cho-
sen approximation of an infinitely long QC with �E→0. In
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a finite QC, the jump acquires a finite width determined by
the transparency of the contacts.

B. Method

To study this problem in more detail it is convenient to
expand Green’s functions over the orthonormal set of func-
tions un�r�,

G�
R�A��r1,r2� = �

n

un�r1�un
��r2�

En − � � i�
,

where un�r� satisfy the Schrödinger equation

��2p̂2

2m
− � + UCh�r� + Vb	un + EC�

m

umNmn = Enun. �7�

Here Nmn=�VdVum
� �r�un�r�f�Em�; f�Em�
1–2n�Em�, where

n�Em� is the occupation probability of the mth state. The
diagonal element is proportional to the average charge eNnn
in the state n. While obtaining Eq. �7� we used the Keldysh
function in the form

G�
K�r1,r2� = 2�i�

n

��� − En�un�r1�un
��r2�f�En� .

Since main contributions to the transport come from the
quasiresonant tunneling states it is convenient to expand the
functions un over the scattering states, vp�x�, satisfying the
1D equation

��2p̂x
2

2m
− � + Vb�x�	vp�x� = �pvp�x� , �8�

Vb�x�=V0����x�d /2�. The wave functions can be chosen
as incident waves on the left, vp, and incident waves on the
right, vp̄. We assume a symmetric structure such that each
barrier is characterized by the same plane-wave reflection R
and transmission T amplitudes, R= �R�ei� and T=−�T�ei�,
where � is the scattering phase; �R�2+ �T�2=1.

The states with an incident particle on the left, vp�x�, and
on the right, vp̄�x� are, respectively,

vp�x� = �eipx + re−ipx, x � − d/2
teipx, x 
 d/2 � , �9�

vp̄�x� = �e−ipx + re+ipx, x 
 d/2
te−ipx, x � − d/2� . �10�

Here r and t are the reflection and transmission amplitudes
for the double-barrier structure. We will also use the even
and odd functions

vp
��0��x� =

1
�2

�vp�x� � vp̄�x�� .

For �x��d /2 the functions are

vp
��0��x� =

Te−ipd/2

�2
� eipx � e−ipx

e−ipd/2 � Reipd/2	 . �11�

The free functions satisfy

�
−�

�

vp
��0��x�vp�

���0��x�dx = 2���p − p�� , �12�

�
0

�

vp
��0��x�vp

���0��x��
dp

2�
= ��x − x�� . �13�

The reflection and transmission coefficients correspond, by
definition, to the plane waves,

rp � tp = e−ipd+i�
1 � �R�e−ipd−i�

e−ipd−i� � �R�
.

We now express the wave functions un through the free
functions vp,

un�x� =� Anpvp�x�
dp

2�
.

Since un�x� are also orthonormal, we have

En

pnpµ
p

E

EC

(b)

EC

-EC

pp'F
T=0

EC=0

ε

T=0
EC<2T

EC>2T

(a)

FIG. 1. �Color online� �a� Energy spectrum of an infinitely long conductor near the Fermi energy. Finite T �green lines�: The slope at E=0
is positive for EC�2T �full line� and negative for 2T�EC �dotted line�. For T=0 �red lines� the Fermi momentum determines the jump in
the spectrum; pF� = pF−UC /�vF �dashed vertical line�. Straight �black� line: zero Coulomb energy. �b� Energy spectrum for finite-transparency
contacts. The dots illustrate positions of the states.
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�
n

Anp
� Anp�

�� = 2���p − p��, � dp

2�
Anp

� An�p
�� = �n,n�.

�14�

Using the orthogonality and completeness of both sets un and
vp, Eqs. �12�–�14�, one can show that the states un with the
different n are expanded in vp with different p. This property,
in particular, excludes the multivalued solutions of Eq. �6�
shown in Fig. 1�a�. Expanding Eq. �7� into wave functions
vp�x� we obtain

Anp��p − En� +� dp�

2�
Anp��UCMpp� + ECQpp�� = 0, �15�

where �p=�2p2 /2m−EF and

Qpp� = �
m
� dp1dp2

�2��2 Amp1
Amp2

� f1�Em�Mpp1
Mp2p�.

Here introduce the matrix elements

Mpp� 
 �
−d/2

d/2

vp
��x�vp��x�dx ,

which can be explicitly expressed through the transmission
amplitude, T, as

Mpp�
� =

Tp�T p
�ei�p−p��d/2��p − p��

�e−ip�d/2 � Reip�d/2��eipd/2 � R�e−ipd/2�
�16�

with ��p�
�2 / p�sin�pd /2�. The upper �lower� signs refer to
the even �odd� states in the QC. For �T ��1 there exist sharp
resonances in the transmission when the momentum of elec-
trons inside the QC is close to the resonant values corre-
sponding to integer ratio s
�pd+�� /�, ���. The even and
odd resonant states correspond to s=2n+1 and s=2n, re-
spectively. Note that the factors M are nearly orthogonal,

� Mpp1

� Mp1p�
� dp1

2�
� 2���p − p�� , �17�

if both p and p� are close to the same resonance, �p
−qn� , �p�−qn��d−1.

It is important that the true wave functions un�r� do also
have resonances inside the QC. The presence of resonances
implies, in particular, that transport is controlled only by dis-
crete resonant levels, which distinguishes the considered
mechanism from the usual elastic cotunneling through a mul-
tilevel quantum dot.13 At EC	�E the corresponding internal
resonance momenta of un�r� lie far from the particle mo-
menta in the leads �k=�2m�E+EF� due to a large interaction
energy in the QC. Nevertheless, each resonance state of un�r�
inside the QC is close to some resonance state of the plane
wave vp�x� with a momentum �p that is, in general, distinct
from �k. Keeping this in mind, one can put Anp�Mqnp

�

=Mpqn
, where the continuous parameter qn is the wave vector

of a particle inside the QC close to nth resonance. This al-
lows us to simplify Eq. �15� in the vicinity of resonances.

III. RESULTS AND DISCUSSION

A. Spectrum

We concentrate on the situation when the transparency
satisfies inequalities �2�. If there is no bias voltage, the dis-
tribution functions for particles coming from the left and
right are the same, f�E�=tanh�E /2T�. Using orthogonality
condition �17� we obtain from Eq. �15�

En = �qn
+ UC + EC� dp

2�
f�Ep�Mpp. �18�

Here �qn
=�2qn

2 /2m−EF, the integration is performed over
the vicinity of the nth resonance. Note that that in approxi-
mation �17� the off-diagonal terms Nnm �m�n� present in
Eq. �7� vanish. Equation �18� generalizes Eq. �6� with the
replacements �p→Em, �p→�qn

and defines the value qn that
corresponds to the resonant transmission through the QC.
The inelastic relaxation is the slowest intra-QC relaxation in
the ballistic limit since the RC time is of the order of the
flight time d /vF for EC /�E�1. Were the inelastic processes
efficient, ���� /�, the distribution would be determined by
the states in the QC, f�Ep�
 f��qn

�=tanh��qn
/2T�. The abrupt

dependence shown in Fig. 1�a� would be then smeared by the
finite temperature, and En as a function of qn would acquire
a finite width �T, similarly to the situation considered in
Ref. 6. However, if Eq. �2� holds, and when temperature
satisfies T�EC, the spectrum En�qn� shows a jump over 2Ec
at some value qn
 p� such that all the levels with qn
 p� are
empty, while the levels with qn� p� are occupied. Therefore
the level population strongly deviates from the Fermi distri-
bution: f�En��sign�qn− p��. With this approximation in the
right-hand side �rhs� of Eq. �18� one finds

En = �vF�qn − pF� + UC + EC��pn − p�� . �19�

Here �pF is the Fermi momentum in the leads; qn is close to
the resonance value pn
�n /d and

��pn − p�� = �2/��arctan�2d�pn − p��/�T �2� . �20�

Equation �19� is one of the central results of this paper; it
generalizes Eq. �1� for low transparency limited by Eq. �2�.
Equations �19� and �1� coincide far from the Fermi level.
Energies En for the resonance momenta pn are shown in Fig.
1�b�. The width of this function is determined by �, rather
than by the temperature.

B. Current

The Fermi momentum, p�, is related to the number of
electrons inside the QC. We define the variation of the aver-
age particle number, �N, as a function of the bias and gate
voltage. Using Eqs. �19� and �20� one can cast this variation
in the form

�N = − ��
n

1

2
��pn − p�� .

If the average number of electrons for zero gate voltage, N0,
is an integer, the chemical potential lies far from one of the
resonances �T �2 /d� �p�− pn���n /2d. Near the degeneracy
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point when N− �N0�= �1 /2 ��. . .� is the integer part�, the
Fermi momentum is close to one of the resonances pn. In
general, the chemical potential and the number of particles
are related by the equation 2�N− �N0��+��pn− p��=1.

For a finite bias V, energies in the left and right leads are
shifted by �eV /2. Following the same approximation as
above, we have instead of Eq. �19�

En = �vF�qn − pF� + UC +
EC

2 �
i=L�R�

��pn − p�
�i�� .

Now the Fermi momenta of electrons coming from left or
right electrode, �p�

L and �p�
R, are not equal. Similarly to the

equilibrium case, we get

�N = − � �
n,i=L�R�

1

4
��pn − p�

�i�� .

Defining

jp 
 up
��x���up�x�/�x�

the current becomes

I = −
e�

m
�
p,�

�fL�Ep�Im jp + fR�Ep̄�Im jp̄� . �21�

The following analysis is different for small and large
values of EC / ��E�. At EC��E, the energy En=�vF�qn
− p�� is independent of the level population and thus is dou-
bly degenerate in spin state. At relatively high temperatures,
��T��E, using Eq. �21�, one obtains

I =
I0

2 �
n
�tanh

En
+

2T
− tanh

En
−

2T
	, I0 


evF

2d
�T �2. �22�

En
�
En�eV /2. Equation �22� generalizes the high-

capacitance Landauer-Büttiker result �compare with Refs. 6
and 25� to bias voltages up to the values corresponding to
several interlevel distances. The IV curves are shown in Fig.
2. The current exhibits steps at

eV = 2��En � �E� ,

where �E= ��vF /���p�−�M /d� is the deviation from reso-
nance between the zero-voltage Fermi energy in the leads
and one of the levels, M being an integer.

For T��E and small voltages, eV��E, the current is
zero. For the resonance, �E=0, the current is given by the
term with n=M in the sum, I= I0 tanh�eV /4T�. At eV�T the
conductance is ohmic, G=eI0 /4T.

For large EC, the states within the interval �p��T�2 /d
near the lowest resonance level, i.e., those which contribute
to the current, have energies �EC. Therefore the distribution
function sign�qn− p�� can be used up to temperatures T
�EC, regardless of the relation between T and � or �E.
Using Eq. �21� we find

I = �I0/4��
n

���pn − p�
R� − ��pn − p�

L�� . �23�

The level positions are determined by the condition of mini-
mal total energy which fixes the value of N−N0. Thus the
levels, as functions of the bias voltage, will cross the Fermi
energy pairwise, one level from above while the other from
below, keeping the number of electrons N−N0 unchanged
and lifting the Coulomb blockade in the bias voltage. If the
Fermi level lies between the resonances, the first step of
height I0 in the current appears for V=�E /e. The next steps
appear when the bias voltage is increased by �V=2�En /e.
The heights of the current steps are the same as for low EC:
the extra factor 1

2 in Eq. �23� is compensated by the pairwise
level crossing.

If the system is close to the degeneracy point, N− �N0�
= �1 /2, when one of the values pn is close to p�, even a
small bias voltage is sufficient to produce current. Since p�

L

− p�
R =eV /�vF and p�

L � p�
R � p� we find from Eq. �23� for

low voltage, eV��,

G 

I

V
=

e2

2��

�T �4

�T �4 + 4�pn − p��2d2 . �24�

In the resonance, pn= p�, the conductance, G, is the single-
spin conductance quantum, e2 /2��. Equation �24� is appli-
cable sufficiently close to a resonance, 4�pn− p��2d2� �T�4.
Otherwise this contribution is small, being beyond the accu-
racy of the employed approximation; it has the same order of
magnitude as that of cotunneling, which is not taken into
account here.

2E1 2E2δE−δE−2E1−2E2 eV

I/I0

2δE

2

4

−2

2E1 2E2−2E1−2E2 eV

I/I0

2

4

−2

(b)(a)

FIG. 2. �Color online� �a� Current steps for zero Coulomb energy and T=0. En=�En is the resonance energy, �E=�v�� /d is the
deviation from the resonance. �b� For exact resonance, �E=0, the steps are doubled.
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For large charging energy EC	�E, the current, Eq. �23�,
and the conductance defined by Eq. �24� do not depend on
temperature at T�EC. This fact distinguishes our results,
Eqs. �23� and �24�, from the predictions of Refs. 6, 18, and
19, where the similar expressions were found only within the
temperature domain T��. The difference is due to the pres-
ence of the step in the energy spectrum caused by relatively
strong coupling to the leads. Probing the onset of ohmic
conductance at the degeneracy point allows one to monitor
the effective number of electrons in the QC.

In conclusion, we have developed a mean-field descrip-
tion of the Coulomb effects in the “weakly open” 1D systems
and analyzed both the excitation energy spectrum and the
electric current. The IV curves show a steplike dependence
on the bias voltage, the exact shape being determined by the
ratio of the charging energy to the level spacing. At large
charging energy and low temperatures T�EC, the low-
voltage ohmic conductance, Eq. �24�, is temperature-

independent irrespectively to the magnitude of the ratios
T /�E and T /�. This is due to a nonequilibrium population
of levels in the QC caused by strong coupling to the leads,
which distinguishes our results from those obtained for
weakly coupled conductors with an equilibrium population
of the energy levels.
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